Skip to main content

The lithium-ion batteries in our devices degrade over time and come with a large environmental cost. Are there better ways to store and carry energy that are kinder to the planet?

T
They are the beating heart of our modern portable technology – packets of energy that we can charge from a plug in the wall and slowly drain through the course of a day. Lithium-ion batteries have transformed our ability to store and carry energy around with us, and so, in turn, revolutionised the devices we use.
First commercialised by Sony in 1991 as the company sought a solution to the limited battery life of its handheld camcorders, they power many of the gadgets we use today – from smartphones and laptops to electric toothbrushes and handheld vacuum cleaners. At the end of last year, the three scientists behind its invention won the Nobel Prize in Chemistry for enabling this technical revolution.
And our need for them is only likely to grow. Electric vehicles are reliant upon lithium-ion batteries as a substitute for the fossil fuels we currently pour into our cars. As renewable energy sources make up more of the electricity supply around the world, huge battery banks are likely to be needed to store excess energy for times when the wind doesn’t blow or the Sun isn’t shining. Worldwide more than seven billion lithium-ion batteries are sold each year and that is expected to grow to more than 15 billion by 2027.
The demand for longer-lasting batteries capable of holding more charge is likely to rise as more electric vehicles appear on our roads (Credit: Alamy) 


 This has spurred scientists around the world to try and develop new types of battery that can overcome these problems. By harnessing a range of materials, from diamonds to super-stinky fruit, they hope to find new ways of powering the technologies of the future.
 
Lithium-ion batteries work by allowing charged lithium particles (ions) to move electricity from one end to the other, passing through a liquid electrolyte in the middle. One of the things that makes lithium-ion batteries so attractive is their “energy density” – the maximum energy a battery can hold for its volume – which is one of the highest of any commercially available battery on the market. They can also deliver higher voltages than other battery technologies.
Batteries are essentially made of three key components – a negative electrode, a positive electrode, and an electrolyte between them. The roles of the electrodes switch between cathode and anode depending on whether the battery is charging or discharging. In lithium-ion batteries, the cathode is typically made from a metal oxide that includes and another metal. When charging, lithium ions and electrons move from the cathode to the anode where they “stored” as electrochemical potential. This occurs through a series of chemical reactions in the electrolyte that are driven by the electrical energy flowing from the charging circuit. When a battery is in use, lithium ions flow in the opposite direction from the anode to the cathode through the electrolyte, while electrons flow through the electrical circuit of the device the battery is installed in, providing it with power.
Over the years, tweaks to the materials used in the cathode and anode have helped to improve the capacity and energy density of lithium-ion batteries, but the most dramatic improvements have been in the falling cost of the batteries.

Our thirst for battery power is only likely to grow in the coming years as the range of portable electronic paraphernalia in our lives increases

“It’s got to a point where the chemistry developed 35 years ago has plateaued,” says Mauro Pasta, a materials scientist at the University of Oxford and project leader at The Faraday Institution, who is working on the next phase of lithium-ion batteries. His aim is to boost the energy density of lithium-ion batteries while also increasing their efficiency so they don’t lose power over repeated charges and discharges.
To do this, Pasta is focused on replacing the highly flammable electrolyte fluid found in modern lithium-ion batteries with a solid made from ceramic. Using a solid reduces the risk of electrolytes combusting in the event of a short or unstable cell, which was behind Samsung’s 2017 recall of 2.5 million Galaxy Note 7s after a series of battery fault fires. It’s important for future safety, as even the polymer-gel electrolyte found in most of our portable electronics is still flammable.
This solid state battery also makes it possible to use dense lithium metal instead of the graphite anode, which significantly increases the amount of energy it can store in the process. It could have huge implications on the future of driving.
Right now, every electric vehicle contains the equivalent of thousands of iPhone batteries. As electric vehicles look set to replace those run on fossil fuels in many countries in the coming years, the shift towards solid state batteries would mean longer journeys and more time between recharges.
Our thirst for battery power is only likely to grow in the coming years as other modes of transport attempt to go electric and the range of portable electronic paraphernalia in our lives increases, so should we be looking for alternatives to lithium that could ease the impact it has on the environment?
                                               source:BBC News

Comments

Popular posts from this blog

Google just put a photo of the Pixel 4A on its store 38 .Is the next budget Pixel finally coming soon?

Image: Google Where is Google’s Pixel 4A? Sitting right on the company’s online store, as it turns out. Google seems to have mistakenly published an image of the Pixel 4A on its Canadian store. The text says “Nest Wifi,” but uh... that’s no Nest Wifi. The phone has already leaked extensively over the last few months, but this is a marketing render direct from Google — and it suggests that the 4A might finally be coming sometime in the near future. Note also that the screen has a date of May 12th on it, which is pretty solid confirmation that Google did originally plan to launch the 4A during its annual developers conference before it was canceled due to the COVID-19 pandemic. Nest Wifi, you say? I don’t think so. RELATED The 4A seen in the photo has a matte black finish with a light blue power button and the large camera cutout we’ve seen in prior leaks; there’s just one camera in there, though. Thankfully the headphone jack is still up there at the top. The phone is believed to have 

This is the first known particle with four of the same kind of quark-The exotic particle could be a unique testing ground for ideas about how quarks interact

In a never-before-seen particle, four quarks of a feather flock together. Physicists think they have detected the first conglomerate of four quarks incorporating more than two of the same kind. This tetraquark contains  four quarks of the charm variety : two charm quarks and their antimatter counterparts, called anticharm quarks, researchers report online at arXiv.org on June 30. Quarks — fundamental building blocks of matter — typically make up three-quark particles, like protons and neutrons, or quark-antiquark pairs, like pions and kaons. Physicists have observed some more exotic  quark quartets  ( SN: 4/11/14 ) and  even quintets  ( SN: 7/14/15 ). But the new four-quark particle, dubbed X(6900), is the first four-quark particle with all of the same type. Since charm quarks and their anticharm counterparts are among the heaviest types of quarks, it is also the first tetraquark to include more than two heavy quarks. “It’s a pretty exciting finding,” says physicist Matthew Shepherd of

Ed Sheeran: 'I'd binge eat until I was sick'

Sheeran has revealed how his "very addictive personality" led him to binge on food and alcohol during the early days of his success. Speaking at an  online summit on anxiety and wellbeing  , the star said he had suffered panic attacks and hated the way he looked after becoming famous. He hit a particularly rough patch during his 2014-15 world tour. "I felt, 'What was the point?' In a dark way, like, 'Why am I around? What is the point?'" he said. The star said credited his wife, Cherry, and a more healthy lifestyle for helping him turn his life around. "She exercises a lot, so I started going on runs with her. She eats quite healthily so I started eating quite healthily. She doesn't drink that much so I wasn't drinking," he said. "I think that all changed things." If you're affected by any of the issues raised in this story, the BBC's Action Line can help you find support. In a wide-ranging interview with documenta